Abstract

Mathematical morphology is a successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of supremum and infimum with respect to an order. From dilation and erosion one can build readily other useful elementary morphological operators and filters, such as opening, closing, morphological top-hats, derivatives, and shock filters. Such operators are available for grey value images, and recently useful analogs of these processes for matrix-valued images have been introduced by taking advantage of the so-called Loewner order. There is a number of approaches to morphology for vector-valued images, that is, color images based on various orders, however, each with its merits and shortcomings. In this chapter we propose an approach to (elementary) morphology for color images that relies on the existing order based morphology for matrix fields of symmetric 2 × 2-matrices. An RGB-image is embedded into a field of those 2 × 2-matrices by exploiting the geometrical properties of the order cone associated with the Loewner order. To this end a modification of the HSL-color model and a relativistic addition of matrices is introduced. The experiments performed with various morphological elementary operators on synthetic and real images provide results promising enough to serve as a proof-of-concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call