Abstract
The spherical expanded polystyrene particle–oil two-phase flow in a vertical pipe was used to simulate the dispersed phase distribution in laminar bubbly flows. A three-dimensional particle image tracking technique was used to track the particles in the flow to study the ordered structure of dispersed phase distribution and its transition to disorder. The ordered structures behaved as particle strings aligned in the flow direction as induced by the flow shear. The structures were quite durable in high liquid velocity flows and dispersed gradually as the liquid velocity decreased. In lower velocity flows, the particles tended to form clusters in the horizontal direction, as predicted by potential theory for spherical bubbles rising in a quiescent inviscid liquid and as observed in experiments on non-shear bubbly water flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.