Abstract
Using a combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), we document the composition-dependent morphologies of 39 new poly(lactide-block-1,4-butadiene-block-lactide) (LBL) block polymers, comprising a broad dispersity B segment (Mn = 4.5–17.7 kg/mol; Đ = Mw/Mn = 1.72–1.88) and narrow dispersity L end blocks (Mn = 0.6–15.3 kg/mol; Đ = 1.10–1.21) with volume fractions 0.26 ≤ fB ≤ 0.95. A subset of these samples undergo melt self-assembly into cylindrical, lamellar, and apparently bicontinuous morphologies. By assessing the states of order and disorder in these triblock polymer melts using temperature-dependent SAXS, we find that broad B segment dispersity increases the minimum segregation strength χN ≳ 27 required for LBL triblock self-assembly relative to the self-consistent mean-field theory prediction χN ≥ 17.9 for narrow dispersity analogues. While B segment dispersity has previously been shown to thermodynamically stabilize the self-assembled morphologies of low χ/high N ABA triblocks, the present study indicates that broad B block dispersity in related high χ/low N systems destabilizes the microphase-separated melt. These observations are rationalized in terms of recent theories that suggest that broad segmental dispersity substantially enhances fluctuation effects at low N, thus disfavoring melt segregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.