Abstract

A reverse Monte Carlo analysis of neutron and x-ray total scattering data from two ceria-zirconia samples of composition Ce0.75Zr0.25O2 is performed to analyze the distribution of cations and to examine the possibility of oxide-ion disorder. For the first material, heated in air under moderate conditions (800 °C), the structure is a single-phase solid-solution with the statistical distribution of cations, but a local tetragonal symmetry is found, consistent with the different coordination preferences of Ce and Zr. For the second material, heated under H2 at 1050 °C followed by reoxidation at 400 °C, the structure shows a considerable disorder, with evidence for oxygen interstitials (Frenkel-ion defects) and a non-statistical distribution of cations with significantly higher concentrations of like–like cation nearest neighbors, highlighting the existence of cation-rich nano-domains. The results highlight the dynamic nature of this solid-solution, with structural evolution upon thermal treatment, which is of relevance to understanding its stability under redox catalytic conditions in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call