Abstract

Abstract. In this second part of a two-part study, we performed a simulation of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. The model results are evaluated for their ability to reproduce the fluxes of DOC and carbon dioxide (CO2) along the soil–inland-water continuum and the exchange of CO2 with the atmosphere, including the evasion outgassing of CO2 from inland waters. We present simulation results over the years 1901–2007 and show that the model is able to broadly reproduce observed state variables and their emergent properties across a range of interacting physical and biogeochemical processes. These include (1) net primary production (NPP), respiration and riverine hydrologic amplitude, seasonality, and inter-annual variation; (2) DOC concentrations, bulk annual flow, and their volumetric attribution at the sub-catchment level; (3) high headwater versus downstream CO2 evasion, an emergent phenomenon consistent with observations over a spectrum of high-latitude observational studies. These quantities obey emergent relationships with environmental variables like air temperature and topographic slope that have been described in the literature. This gives us confidence in reporting the following additional findings: of the ∼34 Tg C yr−1 left over as input to soil matter after NPP is diminished by heterotrophic respiration, 7 Tg C yr−1 is leached and transported into the aquatic system. Of this, over half (3.6 Tg C yr−1) is evaded from the inland water surface back into the atmosphere and the remainder (3.4 Tg C yr−1) flushed out into the Arctic Ocean, mirroring empirically derived studies. These riverine DOC exports represent ∼1.5 % of NPP. DOC exported from the floodplains is dominantly sourced from recent more “labile” terrestrial production in contrast to DOC leached from the rest of the watershed with runoff and drainage, which is mostly sourced from recalcitrant soil and litter. All else equal, both historical climate change (a spring–summer warming of 1.8 ∘C over the catchment) and rising atmospheric CO2 (+85.6 ppm) are diagnosed from factorial simulations to contribute similar significant increases in DOC transport via primary production, although this similarity may not hold in the future.

Highlights

  • A new branch of the high-latitude-specific land surface component of the Institut Pierre Simon Laplace (IPSL) Earth system model, ORCHIDEE MICT-LEAK (r5459), was enabled to simulate new model processes of soil dissolved organic carbon (DOC) and CO2 production

  • Climatological input to the model is from the Global Soil Wetness Project Phase 3 (GSWP3) v.0 data, based on 20th century reanalysis using the National Centers for Environmental Prediction (NCEP) land–atmosphere model and downscaled to a 0.5◦, 3-hourly resolution covering the period 1901 to 2007 (Table S1)

  • During its transport through inland waters, DOC can be decomposed into CO2 (2.1 Tg C yr−1), and a fraction of river CO2 produced from DOC and transferred from soil escapes to the atmosphere (3.6 Tg C yr−1) through gas exchange kinetics (Part 1, Sect. 2.10)

Read more

Summary

Introduction

A new branch of the high-latitude-specific land surface component of the Institut Pierre Simon Laplace (IPSL) Earth system model, ORCHIDEE MICT-LEAK (r5459), was enabled to simulate new model processes of soil dissolved organic carbon (DOC) and CO2 production Their advective and diffusive vertical transport within a discretised soil column as well as their transport and transformation within the inland water network, in addition to improved representation of hydrological and carbon processes in floodplains These additions, processes first coded in the model ORCHILEAK (Lauerwald et al, 2017) and implemented within the high-latitude base model ORCHIDEEMICT v8.4.1 (Guimberteau et al, 2018), were described in detail in the first part (Part 1) of this study, depicted graphically in Fig. S1a and b in the Supplement. The simulation setup and rationale for choice of simulation basin are outlined below

Simulation rationale
Simulation setup
Results and interpretation
Model output: carbon budget
Model evaluation: river discharge
Model evaluation
Emergent phenomena
DOC reactivity pools
LOAC fluxes
LOAC export flux considerations
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call