Abstract

The chloroplast thylakoid membrane is composed of membrane lipids and photosynthetic protein complexes, and orchestration of thylakoid lipid biosynthesis and photosynthesis-associated protein accumulation is considered important for thylakoid development. Galactolipids consist of ~80% of the thylakoid lipids and their biosynthesis is fundamental for chloroplast development. We previously reported that the suppression of galactolipid biosynthesis decreased the expression of photosynthesis-associated nuclear- and plastid-encoded genes (PhANGs and PhAPGs). However, the mechanism for coordinative regulation between galactolipid biosynthesis in plastids and expression of PhANGs and PhAPGs remains largely unknown. To elucidate this mechanism, we investigated the gene expression patterns in galactolipid-deficient Arabidopsis seedlings during the deetiolation process. We found that galactolipids are crucial for inducing both the transcript accumulation of PhANGs and PhAPGs and the accumulation of plastid-encoded photosynthesis-associated proteins in developing chloroplasts. Genetic analysis indicates the contribution of GENOMES UNCOUPLED1 (GUN1)-mediated plastid-to-nucleus signaling pathway for PhANG regulation in response to galactolipid levels. Previous studies suggested that the accumulation of GUN1 reflects the state of protein homeostasis in plastids and alters the PhANG expression level. Thus we propose a model that galactolipid biosynthesis determines the protein homeostasis in plastids at the initial phase of deetiolation and optimizes the GUN1-dependent signaling to regulate the PhANG expression. This mechanism might contribute to orchestrating the biosynthesis of lipids and proteins for the biogenesis of functional chloroplasts in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call