Abstract
While multicore hardware has become ubiquitous, explicitly parallel programming models and compiler techniques for exploiting parallelism on these systems have noticeably lagged behind. Stream programming is one model that has wide applicability in the multimedia, graphics, and signal processing domains. Streaming models execute as a set of independent actors that explicitly communicate data through channels. This paper presents a compiler technique for planning and orchestrating the execution of streaming applications on multicore platforms. An integrated unfolding and partitioning step based on integer linear programming is presented that unfolds data parallel actors as needed and maximally packs actors onto cores. Next, the actors are assigned to pipeline stages in such a way that all communication is maximally overlapped with computation on the cores. To facilitate experimentation, a generalized code generation template for mapping the software pipeline onto the Cell architecture is presented. For a range of streaming applications, a geometric mean speedup of 14.7x is achieved on a 16-core Cell platform compared to a single core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.