Abstract

Electrical power generation using innovative renewable and alternative geothermal energy technologies have shown merits and received renewed interest in recent years due to an in‐ creasing concern of greenhouse gas (GHG) emissions, being responsible for global warming & climate change, environmental pollution, and the limitations and conservation of natural energy resources. Organic Rankine Cycle (ORC) power generation using low-temperature geothermal resources is one of these innovative geothermal power generation technologies. The vast low-temperature geothermal resources found widely in most continental regions have not received much attention for electricity generation. Continuous development of ORC power generation and state-of-the-art drilling technologies and other factors make this renewable and nonconventional energy source one of the best future viable, alternate and available source to meet the required future electricity demand worldwide, significantly re‐ ducing GHG emissions and mitigating global warming effect. The first part of this chapter will introduce the ORC-based geothermal power generation technology. It will also present its fundamental concept for power generation and discusses its limitations, environmental & economic considerations, and energy conversion performance concept. Another novel “dou‐ ble-benefit” technology is enhanced (engineered) geothermal systems (EGS) using CO2 as the working fluid for combined renewable power generation and CO2 sequestration. CO2 is of interest as a geothermal working fluid mainly because it transfers geothermal heat more efficiently than water. While power can be produced more efficiently using this technology, there is an additional benefit for carbon capture and sequestration (CCS) for reducing GHG emissions. Using CO2 as the working fluid in geothermal power systems may permit utiliza‐ tion of lower-temperature geologic formations than those that are currently deemed eco‐

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.