Abstract
High-resolution observations of the inner regions of barred disc galaxies have revealed many asymmetrical, small-scale central features, some of which are best described as secondary bars. Because orbital time-scales in the galaxy centre are short, secondary bars are likely to be dynamically decoupled from the main kiloparsec-scale bars. Here we show that regular orbits exist in such doubly barred potentials, and that they can support the bars in their motion. We find orbits in which particles remain on loops: closed curves which return to their original positions after two bars have come back to the same relative orientation. Stars trapped around stable loops could form the building blocks for a long-lived, doubly barred galaxy. Using the loop representation, we can find which orbits support the bars in their motion, and the constraints on the sizes and shapes of self-consistent double bars. In particular, it appears that a long-lived secondary bar may exist only when an inner Lindblad resonance is present in the primary bar, and that it would not extend beyond this resonance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.