Abstract

© 2018 American Mathematical Society. The purpose of this paper is to advance our knowledge of two of the most classic and popular topics in transformation semigroups: automorphisms and the size of minimal generating sets. In order to do this, we examine the k-homogeneous permutation groups (those which act transitively on the subsets of size k of their domain X) where |X| = n and k < n/2. In the process we obtain, for k-homogeneous groups, results on the minimum numbers of generators, the numbers of orbits on k-partitions, and their normalizers in the symmetric group. As a sample result, we show that every finite 2-homogeneous group is 2-generated. Underlying our investigations on automorphisms of transformation semigroups is the following conjecture: If a transformation semigroup S contains singular maps and its group of units is a primitive group G of permutations, then its automorphisms are all induced (under conjugation) by the elements in the normalizer of G in the symmetric group. For the special case that S contains all constant maps, this conjecture was proved correct more than 40 years ago. In this paper, we prove that the conjecture also holds for the case of semigroups containing a map of rank 3 or less. The effort in establishing this result suggests that further improvements might be a great challenge. This problem and several additional ones on permutation groups, transformation semigroups, and computational algebra are proposed at the end of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.