Abstract
We study the orbits and manifolds near the equilibrium points of a rotating asteroid. The linearised equations of motion relative to the equilibrium points in the gravitational field of a rotating asteroid, the characteristic equation and the stable conditions of the equilibrium points are derived and discussed. First, a new metric is presented to link the orbit and the geodesic of the smooth manifold. Then, using the eigenvalues of the characteristic equation, the equilibrium points are classified into 8 cases. A theorem is presented and proved to describe the structure of the submanifold as well as the stable and unstable behaviours of a massless test particle near the equilibrium points. The linearly stable, the non-resonant unstable, and the resonant equilibrium points are discussed. There are three families of periodic orbits and four families of quasi-periodic orbits near the linearly stable equilibrium point. For the non-resonant unstable equilibrium points, there are four relevant cases; for the periodic orbit and the quasi-periodic orbit, the structures of the submanifold and the subspace near the equilibrium points are studied for each case. For the resonant equilibrium points, the dimension of the resonant manifold is greater than 4, and we find at least one family of periodic orbits near the resonant equilibrium points. As an application of the theory developed here, we study relevant orbits for the asteroids 216 Kleopatra, 1620 Geographos, 4769 Castalia and 6489 Golevka.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.