Abstract

BPS and non-BPS orbits for extremal black-holes in N=2 Maxwell–Einstein supergravity theories (MESGT) in five dimensions were classified long ago by the present authors for the case of symmetric scalar manifolds. Motivated by these results and some recent work on non-supersymmetric attractors we show that attractor equations in N=2 MESGTs in d=5 do indeed possess the distinct families of solutions with finite Bekenstein–Hawking entropy. The new non-BPS solutions have non-vanishing central charge and matter charge which is invariant under the maximal compact subgroup K˜ of the stabilizer H˜ of the non-BPS orbit. Our analysis covers all symmetric space theories G/H such that G is a symmetry of the action. These theories are in one-to-one correspondence with (Euclidean) Jordan algebras of degree three. In the particular case of N=2 MESGT with scalar manifold SU∗(6)/USp(6) a duality of the two solutions with regard to N=2 and N=6 supergravity is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.