Abstract

An orbitope is the convex hull of an orbit of a compact group acting linearly on a vector space. These highly symmetric convex bodies lie at the crossroads of several fields, including convex geometry, algebraic geometry, and optimization. We present a self-contained theory of orbitopes, with particular emphasis on instances arising from the groups SO(n) and O(n); these include Schur–Horn orbitopes, tautological orbitopes, Carathéodory orbitopes, Veronese orbitopes, and Grassmann orbitopes. We study their face lattices, algebraic boundaries, and representations as spectrahedra or projected spectrahedra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.