Abstract
Time-independent, fully converged, quantum dynamical calculations have been performed for the F + HD (v = 0, j = 0) and F + HD (v = 1, j = 0) reactions on an accurate potential energy surface down to collision energies of 0.01 meV. The two isotopic exit channels, HF + D and DF + H, have been investigated. The calculations reproduce satisfactorily the Feshbach resonance structures for collision energies between 10 and 40 meV, previously reported in the literature for the HF + D channel. Contrary to the results of a former literature work, vibrational excitation of HD is found to enhance reactivity in all cases down to the lowest collision energy investigated. Shape-type orbiting resonances are found for collision energies lower than 2 meV. The resonances appear as peaks in the reaction cross sections that are associated to specific values of the total angular momentum, J. In contrast with the Feshbach resonances at higher energies, the orbiting resonance structure, which is caused by the van der Waals well of the entrance channel, is identical for the HF + D and DF + H exit channels. The orbiting resonance peaks for F + HD (v = 0) are very small, but those for F + HD (v = 1) could be observed, in principle, with a combination of Raman pumping and merged beams methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.