Abstract
AbstractChanges in the thermal conditions of the ocean surface, the interface for air‐sea exchange, are critical for understanding global climate and environmental change. Here we explore the evolution of sea surface temperature (SST) and the meridional SST gradient (STG) at orbital timescales since 4 million years ago (Ma), along with interactions between SSTs, the cryosphere, and the global carbon cycle. We observe orbital eccentricity and obliquity influences on SST evolution and infer that SST changes may have played a key role in atmospheric CO2 and cryosphere changes through key climate transitions in the past 4 Ma. We find a major equator‐to‐pole STG increase in the Northern Hemisphere (NH) close to the initiation of major NH glaciation (at ∼2.7 Ma). In addition, we find substantial increases in the obliquity sensitivity (Sobl) of NH STG at ∼2.7 Ma and in Southern Hemisphere (SH) STG at ∼1 Ma, which may be responses to important expansions of NH and SH ice sheets, respectively. Phase analysis shows that SST changes typically lead global ice volume changes throughout the last 4 Ma. SST changes also lead atmospheric CO2 changes since ∼1.5 Ma, which indicates that SST changes either drove, or directly reflect, processes that changed ocean‐atmosphere carbon exchange and, thus, atmospheric CO2 concentrations. Overall, our study emphasizes that SST changes were a critical component of climate change throughout the last 4 Ma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.