Abstract
Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (kLa) and mixing time and how to define these parameters experimentally. The scale-up process from an Erlenmeyer flask shaken on an orbital platform to an orbitally shaken single-use bioreactor (SB10-X, 12 L) is described in terms of both fed-batch and perfusion-based processes. The fed-batch process utilizes a recombinant variant of the mammalian cell line, Chinese hamster ovary (CHO), to express a biosimilar of a therapeutic monoclonal antibody. The perfusion-based process utilizes either an alternating tangential flow filtration (ATF) or a tangential flow filtration (TFF) system for cell retention to cultivate an avian cell line, AGE1.CR.pIX, for the propagation of influenza A virus, H1N1, in high cell density. Based on two example cell cultivations, processes outline the advantages that come with using an orbitally shaken bioreactor for scaling-up a process. The described methods are also applicable to other suspension cell lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.