Abstract

Large constellations are typically designed using sets of periodic orbits and satellite control boxes sized to ensure compatible phasing between coorbital constellation planes to prevent conjunction events. This work investigates how the control action for orbit maintenance influences feasible intrashell and intershell distances in a satellite constellation. Two-dimensional lattice flower constellations are simulated in an environment inclusive of orbital perturbations, with onboard sensors and an electric propulsion system constituting the satellite guidance, navigation, and control system. An analysis to define estimates for minimum separation distances is performed as a function of control, propulsion, orbit, environmental, and spacecraft characteristics. An estimate of the intrinsic (geometric) orbital capacity is proposed, based on current and advanced technologies, in order to quantify the number of admissible spacecraft and orbital shells in a selected altitude range. Simulation results are used to improve the fidelity of intrinsic orbital capacity estimates and to understand factors that influence the number of admissible satellite locations in low Earth orbit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.