Abstract

We classify the existence and non-existence of a class of localized solitary waves for the cubic Camassa–Holm-type equation which arises as an asymptotic model with a nonlocal cubic nonlinearity for the unidirectional propagation of shallow water waves. In addition to those peaked solitary-wave solutions, we show by the phase portrait method that there are smooth and cusped solitary waves according to the wave speed and coefficients of nonlocal linear and nonlinear dispersions. We then prove that the smooth solitary-wave solutions are orbitally stable in the energy space under small perturbation. Finally, we establish a Liouville-type property of the solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.