Abstract

We investigate the stability of test-particle equilibrium orbits in axisymmetric, but otherwise arbitrary, gravitational and electromagnetic fields. We extend previous studies of this problem to include a toroidal magnetic field. We find that, even though the toroidal magnetic field does not alter the location of the circular orbits, it enters the problem as a gyroscopic force with the potential to provide gyroscopic stability. This is in essence similar to the situation encountered in the reduced three-body problem where rotation enables stability around the local maxima of the effective potential. Nevertheless, we show that gyroscopic stabilization by a toroidal magnetic field is impossible for axisymmetric force fields in source-free regions because in this case the effective potential does not possess any local maxima. As an example of an axisymmetric force field with sources, we consider the classical problem of a rotating, aligned magnetosphere. By analyzing the dynamics of halo and equatorial particle orbits we conclude that axisymmetric toroidal fields that are antisymmetric about the equator are unable to provide gyroscopic stabilization. On the other hand, a toroidal magnetic field that does not vanish at the equator can provide gyroscopic stabilization for positively charged particles in prograde equatorial orbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.