Abstract
In this paper we prove that the Camassa–Holm equation with quartic nonlinearity is non-integrable via the Painlevé method. The orbital stability of solitary waves for this equation is investigated by constructing a functional extremum problem. This result demonstrates that the resulting solitary wave is unstable when its speed lies in the narrow region of the critical value that connects with the bifurcation condition. In contrast when the speed surpasses the narrow region, the solitary wave is stable. In addition, the stable solitary wave turns into a chaotic state when is driven externally. If a damping term controller is added to the perturbed equation, the solitary wave can also propagate stably under a certain condition. Finally our numerical results show that the perturbed equation is not well controlled when a certain resonant-frequency occurs and is well controlled with a smaller wave speed as well as a higher nonlinear convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.