Abstract

Using density functional dynamical mean-field theory, we show how correlation effects lead to pseudogap and Kondo-quasiparticle features in the electronic structure of pure and doped KFe2Se2 superconductor. Therein, correlation- and doping-induced orbital differentiation are linked to the emergence of an incoherent-coherent crossover in the normal state of KFe2Se2 superconductor. This crossover explains the puzzling temperature- and doping-dependent evolution of resistivity and Hall coefficient, seen in experiments of alkali-metal intercalated iron-selenide superconductors. Our microscopic description emphasises the role of incoherent and coherent electronic excitations towards unconventional transport responses of strange, bad metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.