Abstract

We present a theoretical study of the orbital-resolved photoelectron momentum distributions (PMDs) of F- ions by a two-color counter-rotating circularly polarized field. We show that the PMDs of F- ions can be modulated from an isotropic symmetric distribution into a three-lobe one by adding a weak fundamental counter-rotating field to the intense second harmonic circularly polarized field, and this modulation strongly depends on the initial atomic orbital. The PMDs simulated by the strong-field approximation method show good agreement with those obtained by solving the time-dependent Schrödinger equation. Based on the strong-field approximation method, we find that the radial momentum shift of PMDs for different orbitals is the fingerprint of orbital-dependent initial momentum at the tunnel exit. More importantly, we demonstrate that the lobes in PMDs appear in sequential order, highlighting that the scheme can be viewed as controllable rotating temporal Young's two-slit interferometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call