Abstract

We present a detailed study of the Bose-Hubbard model in a $p$-band triangular lattice by focusing on the evolution of orbital order across the superfluid-Mott insulator transition. Two distinct phases are found in the superfluid regime. One of these phases adiabatically connects the weak interacting limit. This phase is characterized by the intertwining of axial $p_\pm=p_x \pm ip_y$ and in-plane $p_\theta=\cos\theta p_x+\sin\theta p_y$ orbital orders, which break the time-reversal symmetry and lattice symmetries simultaneously. In addition, the calculated Bogoliubov excitation spectrum gaps the original Dirac points in the single-particle spectrum but exhibits emergent Dirac points. The other superfluid phase in close proximity to the Mott insulator with unit boson filling shows a detwined in-plane ferro-orbital order. Finally, an orbital exchange model is constructed for the Mott insulator phase. Its classical ground state has an emergent SO$(2)$ rotational symmetry in the in-plane orbital space and therefore enjoys an infinite degeneracy, which is ultimately lifted by the orbital fluctuation via the order by disorder mechanism. Our systematic analysis suggests that the in-plane ferro-orbital order in the Mott insulator phase agrees with and likely evolves from the latter superfluid phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.