Abstract
A tractable direct optimization algorithm is developed to optimize orbitals in the Slater determinants (S-dets) in a resonating Hartree-Fock (Res HF) wave function. We reduce the variation space using the orbitals to put the first order energy variation in the steepest descent direction. The orbitals in the next iteration are determined so as to minimize the energy functional including up to the second order variation. This algorithm is applied to the one dimensional Hubbard model of half-filling. The optimized S-dets much deviate from the trial S-dets prepared from the HF calculations. The Res HF ground state generated with a few S-dets explains from 99.9 to 95.0% of the ground state correlation energy in all the correlation regimes. We have spin correlation functions with the correct short and long range behaviors and the lowest triplet and singlet spin excitations with correct dispersions, suggesting that the optimization of orbitals incorporates long range spin fluctuations and their mode-mode couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.