Abstract
Leveraging ab initio data at scale has enabled the development of machine learning models capable of extremely accurate and fast molecular property prediction. A central paradigm of many previous studies focuses on generating predictions for only a fixed set of properties. Recent lines of research instead aim to explicitly learn the electronic structure via molecular wavefunctions, from which other quantum chemical properties can be directly derived. While previous methods generate predictions as a function of only the atomic configuration, in this work we present an alternate approach that directly purposes basis-dependent information to predict molecular electronic structure. Our model, Orbital Mixer, is composed entirely of multi-layer perceptrons (MLPs) using MLP-Mixer layers within a simple, intuitive, and scalable architecture that achieves competitive Hamiltonian and molecular orbital energy and coefficient prediction accuracies compared to the state-of-the-art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.