Abstract

Various proposed space experiments to test the weak equivalence principle (EP) use ultra-precise differential accelerometers in Earth orbit. A common feature of these accelerometers is that their test masses are physically constrained in some manner, thus imposing a limit on the achievable sensitivity. An alternative approach, analogous to the familiar drop-tower experiments, would be to release the masses inside an orbiting protective cavity, and infer the EP violation from observations of their relative trajectory. This paper addresses the errors inherent to such a scheme, focusing on the orbital mechanics aspects. Quantitative results are presented for a candidate sensing system. It is concluded that the technique is limited by initial condition errors, and will not reach the expected sensitivity of the spaceborne accelerometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call