Abstract

In a typical future mission a free flying platform will be released to space by Space Shuttle. After performing its active mission, it will have to wait for a suitable later Shuttle flight for retrieval at its original orbital altitude. To allow for the orbital descent during the total mission time of typically several months, one or several orbit raise manoeuvres have to be performed with the platform's own propulsion system. In the paper, the velocity-requirements Δv for these orbital transfers, depending on Sun activity, rendezvous-altitude, ballistic coefficient and longest expected mission time are treated. The simplest manoeuvre, consisting of one initial ascent transfer and one descent transfer at the actual retrieval date, is shown to be not optimal. Up to 25% of Δv can be saved, if several orbit raising transfers in a certain sequence are applied. A straightforward analytical treatment is presented for the optimization, while a computer program with the CIRA-atmosphere model is used for actual mission planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call