Abstract

The orbital magnetoelectric effect (OME) generically refers to the appearance of an orbital magnetization induced by an applied electric field. Here, we show that nanoribbons of transition metal dichalcogenides (TMDs) with zigzag (ZZ) edges may exhibit a sizeable OME activated by an electric field applied along the ribbons' axis. We examine nanoribbons extracted from a monolayer (1L) and a bilayer (2L) of MoS$_2$ in the trigonal (H) structural phase. Transverse profiles of the induced orbital angular momentum accumulations are calculated to first order in the longitudinally applied electric field. Our results show that close to the nanoribbon's edge-state crossings energy, the orbital angular momentum accumulations take place mainly around the ribbons' edges. They have two contributions: one arising from the orbital Hall effect (OHE) and the other consists in the OME. The former is transversely anti-symmetric with respect to the principal axis of the nanoribbon, whereas the latter is symmetric, and hence responsible for the resultant orbital magnetization induced in the system. We found that the orbital accumulation originating from the OHE for the 1L-nanoribbon is approximately half that of a 2L-nanoribbon. Furthermore, while the OME can reach fairly high values in 1L-TMD nanoribbons, it vanishes in the 2L ones that preserve spatial inversion symmetry.The microscopic features that justify our findings are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call