Abstract

The existence and magnitude of a bulk orbital angular momentum of the chiral condensate in the A phase of superfluid helium-3 is a longstanding matter of controversy. The analogous problem in a chiral p-wave superconducting material is the existence of a finite orbital magnetic moment in the bulk. In Sr2RuO4, the existence of such an orbital moment is strongly suggested by experimental evidence for spontaneous time-reversal symmetry breaking (TRSB) in the superconducting state, but the theories disagree on the expected magnitude of this moment. We show that a nonzero orbital magnetization density arises naturally in a realistic band model for Sr2RuO4, and its temperature dependence is qualitatively similar to those of the muon spin rotation and Kerr effect experimental results. The simplest model that leads to the orbital moment requires at least two degenerate atomic orbitals per Ru, which correspond to the Ru dxz and dyz states. This is in contrast to the theories of orbital angular momentum in the isotropic superfluid 3He, or models of orbital moment in Sr2RuO4 which assume only a single band at the Fermi level. The implications of this surprising result are explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.