Abstract

AbstractA highly selective and durable electrocatalyst for carbon dioxide (CO2) conversion to formate is developed, consisting of tin (Sn) nanosheets decorated with bismuth (Bi) nanoparticles. Owing to the formation of active sites through favorable orbital interactions at the Sn‐Bi interface, the Bi‐Sn bimetallic catalyst converts CO2 to formate with a remarkably high Faradaic efficiency (96%) and production rate (0.74 mmol h−1 cm−2) at −1.1 V versus reversible hydrogen electrode. Additionally, the catalyst maintains its initial efficiency over an unprecedented 100 h of operation. Density functional theory reveals that the addition of Bi nanoparticles upshifts the electron states of Sn away from the Fermi level, allowing the HCOO* intermediate to favorably adsorb onto the Bi‐Sn interface compared to a pure Sn surface. This effectively facilitates the flow of electrons to promote selective and durable conversion of CO2 to formate. This study provides sub‐atomic level insights and a general methodology for bimetallic catalyst developments and surface engineering for highly selective CO2 electroreduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.