Abstract

AbstractSilica has the highest demonstrated potential of any phase to preserve microfossils on Earth and therefore may host potential biosignatures on Mars. We detected hydrated silica in Jezero crater, the landing site of the National Aeronautics and Space Administration's Mars 2020 rover mission, by applying Dynamic Aperture Factor Analysis/Target Transformation to images from the Compact Reconnaissance Imaging Spectrometer for Mars. Hydrated silica detections with Dynamic Aperture Factor Analysis/Target Transformation were verified using commonly accepted Compact Reconnaissance Imaging Spectrometer for Mars analysis methods. The morphology of geologic units associated with silica was characterized with high‐resolution imaging. Several hypotheses are presented for the formation environment of hydrated silica. All are testable via in situ investigation. We assess the likelihood of silica to preserve biosignatures in these different scenarios based on habitability considerations and biosignature preservation in Earth analog environments and materials. Also reported are possible detections of hydrated silica in the Nili Fossae basement and olivine‐rich units, as well as Al‐phyllosilicate within Jezero crater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.