Abstract

Solving Schrödinger equation in quantum mechanics presents a challenging task in numerical methods due to the high order behavior and high dimension characteristics in the wave functions, in addition to the highly coupled nature between wave functions. This work introduces orbital and polynomial enrichment functions to the partition of unity for solution of Schrödinger equation under the framework of HP-Clouds. An intrinsic enrichment of orbital function and extrinsic enrichment of monomial functions are proposed. Due to the employment of higher order basis functions, a higher order stabilized conforming nodal integration is developed. The proposed methods are implemented using the density functional theory for solution of Schrödinger equation. Analysis of several single and multi-electron/nucleus structures demonstrates the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.