Abstract

We theoretically study current-induced orbital magnetization in a chiral crystal. This phenomenon is an orbital version of the Edelstein effect. We propose an analogy between the current-induced orbital magnetization and an Ampère field in a solenoid in classical electrodynamics. To quantify this effect, we define a dimensionless parameter from the response coefficients relating a current density with an orbital magnetization. This dimensionless parameter can be regarded as a number of turns within a unit cell when the crystal is regarded as a solenoid, and it represents how "chiral" the crystal is. By focusing on the dimensionless parameter, one can design a band structure that realizes the induction of large orbital magnetization. In particular, a Weyl semimetal with all of the Weyl nodes close to the Fermi energy can have a large value for this dimensionless parameter, which can exceed that of a classical solenoid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.