Abstract

Smart dust devices are tiny systems-on-a-chip platforms capable of sensing, storing and transmitting data wirelessly as part of a large network with distributed capabilities. Previous works investigated the long-term orbital evolution of smart dust in space by studying the combined effect of gravitational perturbations, solar radiation pressure (SRP) and atmospheric drag. In the current work, the problem of finding long-term orbital equilibria conditions for smart dust is recast and extended to include Poynting–Robertson and Solar Wind (PRSW) drag. By including the PRSW effects and defining new equilibrium conditions on the orbital orientation, some additional partial equilibrium solutions are found. Moreover, it is shown that even though PRSW is not dominant compared to SRP or J2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$J_2$$\\end{document}, it still influences the evolution of the relative Sun-orbit orientation. For orbits with higher initial perigee altitudes, where drag and J2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$J_2$$\\end{document} effects subside, it is shown that PRSW influences long-term orbital behavior, and should be considered in the orbit design scheme of smart dust devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call