Abstract

In addition to the ferromagnetic materials with inversion symmetry breaking, the symmetric antiferromagnetic materials also exhibit intrinsic valley splitting due to the spin-valley coupling. Using first-principles calculations, we investigated the manipulation of valley splitting of antiferromagnetic monolayer ${\mathrm{MnPTe}}_{3}$ via biaxial strain. It is shown that two ${\mathrm{MnPTe}}_{3}$ monolayers with different structures are both stable antiferromagnetic semiconductors, and exhibit valley splitting between $K$ and ${K}^{\ensuremath{'}}$. The spin-valley coupling strength can be greatly tuned by in-plane strain, which is due to the changes of orbital composition of electronic state and the different contribution of two sublattice atoms. The proportions of $d$ orbitals of Mn atoms determine the orbital angular momentum of the electronic state, and the different contribution of different sublattices results in the change of Berry curvature at $K$ and ${K}^{\ensuremath{'}}$ points. The combination of two factors leads to the same changes of valley splitting and the proportion of the ${d}_{xz}$, ${d}_{yz}$ orbitals. These results of are some significance for the design of materials with greater valley splitting and the understanding of its mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.