Abstract

Recently, gas giant planets in nearly circular orbits with large semimajor axes ($a \sim$ 30--1000AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on core accretion model: i) Icy cores accrete from planetesimals at $\lesssim$ 30AU, ii) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and iii) their orbits are circularized through accretion of disk gas in outer regions, where they spend most of time. We analytically derived equations to describe the orbital circularization through the gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 during the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by $\sim$ 10--300, the orbits are sufficiently circularized. On the other hand, $a$ is reduced at most only by a factor of 2, leaving the planets in outer regions. If the relative velocity damping by shock is considered, the circularization is slowed down, but still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their $a$ shrink to a quarter of the disk sizes; the $a$-distribution of distant giants could reflect outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.