Abstract

We study the quantum phase diagram of electrons on kagome lattice with half-filled lowest flat bands by considering the antiferromagnetic Heisenberg interaction J, and short-range Coulomb interaction V. In the weak J regime, we identify a fully spin-polarized phase. The presence of finite V drives a spontaneous chiral current, which makes the system an orbital Chern insulator by contributing an orbital magnetization. Such an out-of-plane orbital magnetization allows the presence of a Chern insulating phase independent of the spin orientation in contrast to the spin-orbit coupling induced Chern insulator that disappears with in-plane ferromagnetism constrained by symmetry. Such a symmetry difference provides a criterion to distinguish the physical origin of topological responses in kagome systems. The orbital Chern insulator is robust against small coupling J. By further increasing J, we find that the ferromagnetic topological phase is suppressed, which first becomes partially polarized and then enters a nonmagnetic phase with spin and charge nematicity. The frustrated flat band allows the spin and Coulomb interaction to play an essential role in determining the quantum phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call