Abstract

A series of epitaxial V1-xWxO2 (0 ≤ x ≤ 0.76%) nanocrystalline films on c-plane sapphire substrates have been successfully synthesized. Orbital structures of V1-xWxO2 films with monoclinic and rutile states have been investigated by ultraviolet-infrared spectroscopy combined with first principles calculations. Experimental and calculated results show that the overlap of π* and d∥ orbitals increases with increasing W doping content for the rutile state. Meanwhile, in the monoclinic state, the optical band gap decreases from 0.65 to 0.54 eV with increasing W doping concentration. Clear evidence is found that the V1-xWxO2 thin film phase transition temperature change comes from orbital structure variations. This shows that, with increasing W doping concentration, the decrease of rutile d∥ orbital occupancy can reduce the strength of V-V interactions, which finally results in phase transition temperature decrease. The experimental results reveal that the d∥ orbital is very important for the VO2 phase transition process. Our findings open a possibility to tune VO2 phase transition temperature through orbital engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.