Abstract

Based on the phased-shifted interference between supermodes, a novel method that can directly convert LP01 mode to orbital angular momentum (OAM) mode in a dual-ring microstructure optical fiber is proposed. In this fiber, the resonance between even and odd HE11 modes in inner ring and higher order mode in outer ring will form two pairs of supermodes, and the intensities and phases of the complete superposition mode fields for the involved supermodes created by the resonance at different wavelengths and propagating lengths are investigated and exhibited in this paper. We demonstrate that OAM mode can be generated from π/2-phase-shifted linear combinations of supermodes, and the phase difference of the even and odd higher order eigenmodes can accumulate to π/2 during the coupling process, which is defined as "phase-shifted" conversion. We build a complete theoretical model and systematically analyze the phase-shifted coupling mechanism, and the design principle and optimization method of this fiber are also illustrated in detail. The proposed microstructure fiber is compact, and the OAM mode conversion method is simple and flexible, which could provide a new approach to generate OAM states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call