Abstract

We study the orbital angular momentum (OAM) L_{z} in two-dimensional chiral (p_{x}+ip_{y})^{ν}-wave superfluids (SFs) of N fermions on a disk at zero temperature, in terms of spectral asymmetry and spectral flow. It is shown that L_{z}=νN/2 for any integer ν, in the Bose-Einstein condensation regime. In contrast, in the BCS limit, while the OAM is L_{z}=N/2 for the p+ip-wave SF, for chiral SFs with ν≥2, the OAM is remarkably suppressed as L_{z}=N×O(Δ_{0}/ϵ_{F})≪N, where Δ_{0} is the gap amplitude and ϵ_{F} is the Fermi energy. We demonstrate that the difference between the p+ip-wave SF and the other chiral SFs in the BCS regimes originates from the nature of edge modes and related depairing effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call