Abstract

We derive the analytical formula for the orbital angular momentum (OAM) flux of a stochastic electromagnetic beam carrying twist phase [i.e., twisted electromagnetic Gaussian Schell-model (TEGSM) beam] in the source plane with the help of the Wigner distribution function. Furthermore, we derive the general expression of the OAM flux of a TEGSM beam on propagation with the help of a tensor method. As numerical examples, we explore the evolution properties of the OAM flux of a TEGSM beam propagating through a cylindrical thin lens or a uniaxial crystal. It is found that the OAM flux of a TEGSM beam closely depends on its twist factors and degree of polarization in the source plane, and one can modulate the OAM flux of a TEGSM beam by a cylindrical thin lens or a uniaxial crystal. Our results may be useful in some applications, such as particle manipulation and free-space optical communications, where light beam with OAM is preferred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call