Abstract
Orbit portraits were introduced by Goldberg and Milnor as a combinatorial tool to describe the patterns of all periodic dynamical rays landing on a periodic cycle of a quadratic polynomial. This encodes information about the dynamics and the parameter spaces of these maps. We carry out a similar analysis for unicritical antiholomorphic polynomials, and give an explicit description of the orbit portraits that can occur for such maps in terms of their characteristic angles, which turns out to be rather restricted when compared with the holomorphic case. Finally, we prove a realization theorem for these combinatorial objects. The results obtained in this paper serve as a combinatorial foundation for a detailed understanding of the combinatorics and topology of the parameter spaces of unicritical antiholomorphic polynomials and their connectedness loci, known as the multicorns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Conformal Geometry and Dynamics of the American Mathematical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.