Abstract

We study the notion of continuous orbit equivalence of finitely-aligned higher-rank graphs. We show that there is a continuous orbit equivalence between two finitely-aligned higher-rank graphs that preserves the periodicity of boundary paths if and only if the boundary path groupoids are isomorphic. We also study eventual one-sided conjugacy of finitely-aligned higher-rank graphs and two-sided conjugacy of row-finite higher-rank graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.