Abstract

In September 2005, Hayabusa (MUSES-C) spacecraft successfully had a rendezvous with asteroid 25143 Itokawa. After the arrival, Hayabusa made detailed observations of the asteroid during its rendezvous period (about three months). As the results of various kinds of scientific analysis, a variety of physical parameters of Itokawa (e.g. size, volume, mass, and density) were derived. As to the orbit determination of Hayabusa spacecraft, during the cruise phase, the radiometric (2-way X-band range and Doppler) data were used for analysis. On the other hand, during the approach phase or rendezvous phase, we could obtain the optical data by means of star tracker or optical navigation camera, thus both the radiometric and the optical data were used for orbit determination. The present paper will report on the results of the orbit determination of Hayabusa during the close proximity phase. We will also mention about the mass estimation of Itokawa in this period. The data used in this analysis are 2-way X-band Doppler data and the position data, which were calculated from optical navigation camera's data. As well as the large orbital maneuvers and the gravitational acceleration of Itokawa, the effect of solar radiation pressure, and the effect of attitude control are also taken into account for the calculation. As to the gravity model of Itokawa, a spherical-harmonics gravity model or a polyhedron gravity model are used depending on the situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.