Abstract

This paper presents an integrated model-learning predictive control scheme for spacecraft orbit-attitude station-keeping in the vicinity of asteroids. The orbiting probe relies on optical and laser navigation while attitude measurements are provided by star trackers and gyroscopes. The asteroid gravity field inhomogeneities are assumed to be unknown a priori. The state and gravity model parameters are estimated simultaneously using an unscented Kalman filter. The proposed gravity model identification enables the application of a learning-based predictive control methodology. The predictive control allows for a high degree of accuracy because the predicted model is progressively identified in situ. Consequently, the tracking errors decrease over time as the model accuracy increases. Finally, a constellation mission concept is analyzed in order to speed up the model identification process. Numerical results are shown and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call