Abstract

We report on the structure and properties of the lithium oxonitridosilicate oxide Li4Sr4[Si4O4N6]O:Eu2+ obtained from solid-state metathesis. The crystal structure was solved and refined from single-crystal X-ray data in the space group P42/ nmc (No. 137) [ Z = 2, a = 7.4833(6), c = 9.8365(9) Å, and R1(obs) = 0.0477]. The structure of Li4Sr4[Si4O4N6]O:Eu2+ is built up from a layered 2D network of SiN3O tetrahedra and exhibits stacking disorder. The results are supported by transmission electron microscopy and energy-dispersive X-ray spectroscopy as well as lattice energy, charge distribution, and density functional theory (DFT) calculations. Optical measurements suggest an indirect band gap of about 3.6 eV, while DFT calculations on a model free of stacking faults yield a theoretical electronic band gap of 4.4 eV. Samples doped with Eu2+ exhibit luminescence in the orange spectral range (λem ≈ 625 nm; full width at half-maximum ≈ 4164 cm-1; internal quantum efficiency at room temperature = 24%), extending the broad field of phosphor materials research toward the sparsely investigated materials class of lithium oxonitridosilicate oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.