Abstract

In recent times, visible light enhancement has become much more considered due to the enlightening properties of nanocomposite systems. This has potential applications for wastewater treatment due to the blemish of toxic organic chemicals from industrial sectors. Therefore, this work is focused on novel 3D ZnO/SnO2 nanocomposites synthesized by the green method (orange peel extracts supported combined chemical processes) utilized for the removal of chlorophenol effluent. The orange peel extract has been incorporated as one of the major components to synthesize an effective nanocomposite. Also, the pure materials were synthesized along with these nanocomposites and tested under various instrumental techniques. The characterized results showed that the composites prepared with orange peel extract exhibited hexagonal 3D ZnO nanospheres with 3D tetragonal structured SnO2 nanocubes. Elemental analysis showed that the partial amount of SnO2 has transformed to SnO due to the reducing ability of orange peel extract. Also, the existing different (Zn2+, Sn4+, and Sn2+) states helped in delaying the transfer of electron-hole recombination to obtain photocatalytic chlorophenol degradation. Further, the prevailing line dislocation can compromise more vacancy and interact with more electrons. The high surface area, least crystallite size, and lower bandgap inspired to enhance the visible light activity. Simultaneously, the pure form of nanomaterial has poor light absorption under visible light. This study achieves the photocatalytic degradation of 77.5% against chlorophenol using a green 3D composite system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.