Abstract

We recently demonstrated the antitumor efficacy of orally administered alpha-tocopheryloxyacetic acid (alpha-TEA), a redox silent and nonhydrolyzable derivative of naturally occurring vitamin E. In order to move alpha-TEA closer to the clinic to benefit patients with breast cancer, the present study had two goals. First, to determine the minimal effective treatment dose; and second, to test the efficacy of dietary administration of alpha-TEA in the clinically relevant MMTV-PyMT mouse model of spontaneous breast cancer that more closely resembles human disease. The minimal effective dose of alpha-TEA was evaluated in the transplantable 4T1 tumor model and we show a dose-dependent decrease of primary tumor growth and reduction of metastatic spread to the lung. Six-week-old MMTV-PyMT mice were treated with oral alpha-TEA for 9 weeks, with no apparent signs of drug toxicity. The alpha-TEA treatment delayed tumor development and significantly slowed tumor progression, resulting in a 6-fold reduction of the average cumulative tumor size. In addition, oral alpha-TEA caused an 80% reduction in spontaneous metastases. In situ analysis of tumor tissue identified apoptosis as an important mechanism of alpha-TEA-mediated tumor suppression in addition to inhibition of tumor cell proliferation. This study shows, for the first time, the ability of orally administered alpha-TEA to delay tumor onset and to inhibit the progression and metastatic spread of a clinically relevant model of spontaneous breast cancer. Our finding of the high efficacy in this tumor model highlights the translational potential of oral alpha-TEA therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call