Abstract

Autophagy is a highly conserved intracellular digestion process that degrades damaged proteins and organelles but the biological roles of autophagy in pathological aspects of oral tissues remain largely unknown. We sought to elucidate the function of autophagy, especially its interplay with apoptosis and oxidative stress, in the oral toxicity induced by exposure to 5 mM sodium fluoride (NaF). Human cementoblasts (HCEM-2) in culture were exposed to 5 mM NaF for 5 min, after which cell viability and cell apoptosis were assessed using the MTS assay and an Annexin V-FITC/PI apoptosis detection kit, respectively. Quantitative RT-PCR and Western blotting were performed to characterize the expression levels of markers for autophagy, apoptosis, and oxidative stress. Senescence-resistant (SAMR1) mice were exposed to 5 mM NaF in their drinking water from 12 to 58 weeks. Micro-computed tomography was used to measure changes in their alveolar bone while immunohistochemistry and immunofluorescence staining was used to evaluate protein expression levels. HCEM-2 cells exposed to 5 mM NaF had decreased levels of autophagy, as shown by reduced expression levels of ATG5, Beclin-1 and LC3-II, elicited apoptosis, which in turn induced oxidative stress and inflammation, as manifested by elevated levels of Bax, cleaved caspase-3, SOD1 and phospho NF-κB. Treatment of mice with 5 mM NaF resulted in histological abnormalities in periodontal tissues, induced excessive oxidative stress and apoptosis, and reduced autophagy. Micro-computed tomography analysis demonstrated that 5 mM NaF caused a decrease in bone areas of mice compared with controls. Exposure to 5 mM NaF induced RANKL (receptor activator of nuclear factor κB ligand) and cathepsin K expression in periodontal tissues, while ATG5 and Beclin-1 expression was abrogated by 5 mM NaF. Taken together, our findings suggest that 5 mM NaF elicits oral toxicity that contributes to excessive apoptosis, oxidative stress, and defective autophagy, which aggravates periodontal tissue damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call