Abstract
This study evaluated the immunomodulatory effect of quercetin on improving cross protection of porcine reproductive and respiratory syndrome virus-1 (PRRSV-1) modified-live virus (MLV) vaccine against highly pathogenic (HP)-PRRSV-2 challenge. Ex vivo experiments demonstrated that quercetin significantly enhanced type I interferon-regulated genes (IRGs) and type I and II interferon (IFN), and significantly decreased pro- and anti-inflammatory cytokine expressions in HP-PRRSV-inoculated monocyte-derived macrophages. In vivo experiments divided pigs (4-week-old; n = 24) into four groups of six pigs. Group 1 and group 2 were immunized with PRRSV-1 MLV vaccine at 0 dpv (day post vaccination). Group 2 also received oral administration of quercetin at 0–49 dpv. Group 3 was injected with PRRSV-1 MLV vaccine solvent at 0 dpv. Group 4 served as strict control. Group 1–3 were challenged intranasally with HP-PRRSV at 28 dpv and immune and clinical parameters were monitored weekly until 49 dpv. Group 1 demonstrated significantly reduced HP-PRRSV viremia, rectal temperature and clinical scores, and significantly improved average daily weight gain (ADWG), compared to group 3. Group 2 demonstrated significantly increased IFN regulatory factor 3, stimulator of IFN genes, IFNα, and significantly decreased transforming growth factor beta (TGFβ) mRNA expressions, compared to group 1. The animals demonstrated significantly reduced HP-PRRSV viremia, but did not demonstrate any further improved PRRSV-specific antibody responses, rectal temperature, clinical scores, and ADWG as compared to group 1. Our findings suggest that quercetin up-regulates IRGs, IFNα, and down-regulates TGFβ mRNA expressions which may contribute to further reducing number of viremic pigs and HP-PRRSV viremia which were conferred by PRRSV-1 MLV vaccine. Our findings also suggest that quercetin may serve as an effective oral immunomodulator for improving cell-mediated immune defense to HP-PRRSV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.